Coordinating assembly of a bacterial macromolecular machine
نویسندگان
چکیده
منابع مشابه
Coordinating assembly and export of complex bacterial proteins.
The Escherichia coli twin-arginine protein transport (Tat) system is a molecular machine dedicated to the translocation of fully folded substrate proteins across the energy-transducing inner membrane. Complex cofactor-containing Tat substrates, such as the model (NiFe) hydrogenase-2 and trimethylamine N-oxide reductase (TorA) systems, acquire their redox cofactors prior to export from the cell ...
متن کاملAssembly and Channel Opening in a Bacterial Drug Efflux Machine
Drugs and certain proteins are transported across the membranes of Gram-negative bacteria by energy-activated pumps. The outer membrane component of these pumps is a channel that opens from a sealed resting state during the transport process. We describe two crystal structures of the Escherichia coli outer membrane protein TolC in its partially open state. Opening is accompanied by the exposure...
متن کاملTemperature dependent coordinating self-assembly.
Self-assemblies dominated by coordination interaction are hardly responsive to thermal stimuli. We show that in case the coordinating mode changes with temperature, the resultant assemblies also exhibit temperature dependence. The self-assemblies are constructed with perylene tetracarboxylate and metal ions. Compounds containing a perylene skeleton often self-assemble into micro-belts, which is...
متن کاملThe spliceosome: a flexible, reversible macromolecular machine.
With more than a hundred individual RNA and protein parts and a highly dynamic assembly and disassembly pathway, the spliceosome is arguably the most complicated macromolecular machine in the eukaryotic cell. This complexity has made kinetic and mechanistic analysis of splicing incredibly challenging. Yet, recent technological advances are now providing tools for understanding this process in m...
متن کاملNucleating the assembly of macromolecular complexes.
Nature constructs intricate complexes containing numerous binding partners in order to direct a variety of cellular processes. Researchers have taken a cue from these events to develop synthetic molecules that can nucleate natural and unnatural interactions for a diverse set of applications. These molecules can be designed to drive protein dimerization or to modulate the interactions between pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Reviews Microbiology
سال: 2008
ISSN: 1740-1526,1740-1534
DOI: 10.1038/nrmicro1887